
shown for a channel cross section 2 m from two diametrally positioned direct-flow nozzles, 
orthogonal to the flow. The channel diameter is 1 cm, the velocity of disperse-phase injec- 
tion is the same for both nozzles (35 m/sec); all the other parameters of the nozzles and the 
gas flow are "standard." The dashed lines in Fig. 4b show the distributions given by each 
nozzle and the continuous curve shows the total mass distribution function of drops over the 
channel cross section. It follows from the resulting calculations that the correct choice 
of parameters of the injection system may ensure a very homogeneous distribution of the dis- 
perse phase even with a small number of nozzles. 
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PROPAGATION OF SMALL DISTURBANCES IN CONCENTRATED DISPERSED SYSTEMS 

A. F. Ryzhkov and E. M. Tolmachev UDC 532.529.5:66.036.5 

The mechanism of elastic pressure waves in concentrated dispersed systems is 
discussed. It is shown that the continuously relaxing medium model is valid 
for describing acoustic effects in a fluidized vibrating layer. 

Concentrated dispersed systems of the "fluidized layer" (FL) type are characterized by 
the essential nonstationarity of all hydrodynamic processes due to the nonlinear properties 
in the particle bulk concentration. The propagation laws of dynamic disturbances play an im- 
portant role. The dynamic FL characteristics earlier considered were usually related to prop- 
agation of comparatively slow plastic isolated waves during spontaneous or induced change 
of flow of a fluidized agent [I, 2]. Their appearance was related to quasielastic relaxa- 
tion processes due to the nonlinear dependence of the aerodynamic particle resistance on 
their spacing density, earlier found by Roy [3]. In this case the analysis included only low 
layers, with pressure waves propagating along them practically instantaneously [4, 5]. One 
of the most interesting effects, explained within the concepts of incompressibility of the 
fluidized agent in an FL, is the effect of ordered oscillations of the gas pressure and of 
the dispersed phase density (in the form of self-oscillations in boiling [6] and induced os- 
cillations in pulsating [i] and vibrating-boiling [5] layers), characterizing the law of ex- 
pansion cycle, precipitation at each period of oscillation, occurring with a completely deter- 
mined "zero-order" frequency /0~'g/~0. 

Imposing on an FL induced oscillations with a frequency larger than the zero-order fre- 
quency (fB > fo), the action of the relaxation oscillations is restricted by the surface and 
bottom portions of the layer, and their contribution to the formation of the internal por- 
tions of the FL is diminished. At the same time the passage of a pressure wave through a 
high FL is compatible with an oscillation period T B. Under these conditions one must expect 
the appearance of gas compressibility (elasticity), which would lead to resonance effects of 
higher than "zero" order. 

At present the model of interacting, mutually penetrating continua is most widely used 
to describe the behavior of dispersed systems. This model is valid when the characteristic 
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scale of the effect exceeds the size of the microinhomogeneity of the dispersed medium. To 
this belongs propagation of elastic escillations in a dispersed medium with a wavelength 
significantly exceeding the particle diameter and the mean distance between them. For tenu- 
ous fluidized beds and "gas" or moist vapor type media the presence of a mechanism of propa- 
gation of elastic oscillations in the form of acoustic waves was proved (see, for example, 
[7]), while an analytic description of sound propagation in these media results from a justi- 
fied assumption on particle interaction with each other through the supporting phase only. 
This a priori simplification is too crude in concentrated dispersed media. Therefore, sev- 
eral investigators have doubted the very possibility of existence of elastic waves in concen- 
trated dispersed systems of the FL type, where the mean distance between the centers of the 
dispersed particles is on the order of their diameter [2]. This doubt is fully justified 
due to the nonlinearity of the object and the presence of significant dissipative effects. 
Only experiments can indicate the presence of elastic properties in FLs, implying the possi- 
bility of propagation of elastic oscillations in concentrated dispersed systems, considered 
as homogeneous media with effective characteristics. 

The problem of studying the dynamic properties of FL is complicated by the difficulty of 
creating a stable, macroscopically uniform fluid (without bubbles) with properties assigned 
ahead of time. At this stage the most suitable is the layer of findly dispersed particles, 
oscillating as a quasifluid (VL). For certain combinations of oscillation parameters (fB and 
AB), properties of the dispersing medium, and its elements (H, Pl, dl, ~o, po) there occur 
expansion and fluidization of solid particles in the oscillating bulk of the gas, accompanied 
by relatively slow secondary phase transformations. In this case the expansion is maintained 
at a high level, and the aggregate of solid particles never separates at the bottom of the 
cavity. This is proved by the well-known fact of immobility of the upper boundaries of the 
expanding VL for practically nonselecting motion (from the bottom) of the lower parts of the 
layer with the relation AII/A~ ~ 101. * 

Thus, the separation pulsation (occurring with frequency fB ) does not exceed the mean by 
more than 5-7%, exceeding the separation of the precipitated layer by 30-50%. Taking into 
account that in a slightly dispersed fluidized filling the pulsations of gas pressure po and 
of particles Pl are of the same order (for example, for maximum expansion Po > 2p~ [i0, p. 
186]), we reach a conclusion of continuous stress redistribution between the gas and the sus- 
pended particles and the possibility of "freezing" of solid particles in the variable contin- 
uous phase.# It is natural to expect that momentum transfer from the vibrating bottom will 
be realized (to a large extent) by elastic pressure sound waves. 

We discuss a possible mechanism of sound wave propagation in a primarily expanding dis- 
persed mixture. Clearly, in a fluidized gas the speed of sound has the value a0, depending 
on its temperature only. Let a cluster of particles, suspended in the gas, border with a pure 
gas, in which sound waves propagate with speed ~o and angular frequency ~. If the wavelength 
corresponding to this frequency is comparable and larger than the mean distance between par- 
ticles, the latter can be considered as a bulk diffraction lattice, where due to diffraction 
and interference, the incident sound wave will be almost completely absorbed. And since par- 
ticles in the gas are not fixed, the incident wave reduces to oscillating motion of the ex- 
ternal gas layer and particles, which becomes in turn an emitter of acoustic waves, prop- 
agating into the depth of the particle cluster. The velocity of propagating waves can be 
estimated from the thermodynamic relation 

(l) 

whose validity for a dispersed medium is verified if the region of periodic medium compres- 
sion and expansion (wavelength) is much larger than the distance between particles. The 
pressure p of the gas mixture and of the particles differs in most cases quite little from 

*The topic here is not dynamic particle interaction with the bottom [8], but kinematic con- 
tact of sma~l particles, "frozen" in the gas and not tearing away more than 0.2AB, which is 
easily observed, for example, by photography with stroboscopic illumination [9]. 
#A reliable indication of "soft" shockless fluidization under these conditions by the widely 
used fact in VL practice of the absence of noticeable wear and small particle cracking in op- 
timal regimes of vibrating machines. 
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Fig. i. The relative speed of sound as a function of 
the dimensionless frequency in the dispersed medium 
air--corundum: i) d = 0.017 mm; 2) 0.028 [20]; 3) 
0.046 [17, 19]; 4) 0.06; 5) 0.068 [17]; 6) 0.07 [29]; 
7) 0.08; 8) 0.094 [20]; 9) 0.12; i0) 0.15 [18]; ii) 
0.16; 12) 0.19 [20]; 13) 0.23; 14) 0.32; 15) 0.32 [27], 

the pressure of a pure gas, and the Specific volume of the mixture is calculated by the equa- 
tion v = i/p. 

In a dispersed medium consider a portion of the front of a plane wave of unit area and 
width on the order of the wavelength. If the compression velocity (i.e., the oscillation 
frequency) is small, the particles will follow behind the gas. The number of particles N in 
the varying volume will then be a constant quantity equal to nV. From the constancy of N we 
find dn = --(n/V)dV. Assuming that the process of gas compression is adiabatic and neglect- 
ing its heat exchange with particles, we obtain, taking into account the constancy of the gas 
mixture in volume V, 

O p  _ k p  . (2) 
(-~-V)s- v(1--nvi) 

Thus, a t  low f r e q u e n c i e s ,  a cco rd ing  to (1) and (2 ) ,  the  speed of  sound in  a gas--sol id  
particle mixture will be a2(0) = kp/pe. It is hence seen that the square of the speed of 
sound in a dispersed mixture is, for low frequencies, inversely proportional to the mixture 
density, which in a system of the FL type is quite high in comparison with the density of a 
pure gas. Thus, at low frequencies, when the particles at the wave front are completely en- 
trained by the gas, their inertia lowers substantially the speed of sound.* 

Consider now the case of high frequencies, when the particles can be assumed nonmobile 
during the passage of the wave front. In this case a constant quantity is no longer the num- 
ber of particles in a varying volumeV, but their number density n. Assuming primarily that the 
process of change of state of the gas is adiabatic, and neglecting heat exchange of the gas 

2 E with particles, we find after noncomplicated calculations a=(~)=ao/ . 

*With account of heat exchange the adiabatic index k approaches i. The exact expression for 

the equilihrium speed of sound, obtained iN [:!3], is a2(O)=(p/pe)/l+ p__~8~. 
\ poor/ 
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Fig. 2. The speed of sound a (m/sea) in a 
dispersed medium as a function of particle 
diameter dl (m) for fB = idem (llz) and e = 
0.55; a --p~ = 1200 kg/m3; b -- 2400; c -- 
4000; d -- 8000; i) [9]; 2) [15]; 3) [16]; 
4) [17]; 5) [18]; 6) [19]; 7) [20]; 8) [21]; 
9) [22]; 10) [23]; 11) [27]; 12) [29]; 13) 
authors .  

In the general case the propagation velocity of small pgrturbations in a dispersed medi- 
um depends substantially on the interphase interaction during passage of a wave front. If the 
particles are nondeformable, the interphase interaction is reduced to viscous particle fric- 
tion and to interphase heat exchange. As shown by more general analysis, dissipative effects 
must necessarily lead to dispersion during propagation of small particles in a relaxing medi- 
um, i.e., to a frequency dependence of the phase velocity of sound and of the absorption co- 
efficient. This problem, as applied to the systems of gas-solid particles, humid vapors, and 
liquid--vapor bubbles, was solved with various degrees of approximation by many investigators 
(see, for example, [ii, 12]). In the present paper, to calculate the speed of sound in con- 
centrated dispersed systems with temperature and relaxation rates, we basically use the re- 
suits of [12-14], where by applying the relaxation apparatus of thermodynamics of irreversi- 
ble processes, dynamic thermal and caloric equations of state of a dispersed system with tem- 
perature and relaxation rates were obtained: 

pC~ [ pc v 1 -5 ~qDJ To 
- -  -- e--~-P, 5u ---- (pcv ) ~ 8T o " -k p~ 6 (m2o/2), (3) 

P 

(PCv),O=PCv[ 1 p~c~(1--e) TqD ], p~o [ p~(1--e) T]D I (4) 
pc v 1 + TqDJ = p L 1 L p 1 + T jDJ  

For a monochromatic wave the operator D in these expressions is replaced by its eigenvalue 
iw, and the speed of sound in the mixture, according to (I), acquires the form 
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Fig. 3. The speed of sound a (m/see) in a dispersed medium as a 
function of particle density p~ (kg/m 3) for fB = idem (Hz) and 
e = 0.55; a-- d~ = 0.06 m m; b-- 0.12; c -- 0.22. The remaining no- 
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a 2 (r : -ffP-P]s p 1 + i(oTfBy -~- " ' pc v To 1 -J- ir 

where the relaxation times for solid spherical particles are expressed under the assumption 
of small Bi and Re. 

In all practically important cases of fluidization 0o << Px, the voidage e is not very 
close to unity, and Zq ~ Tf. Then, restricting ourselves to the linear approximation a 2 (m) 
in small Bf and Bq, it can be shown that in the whole frequency region the effect of inter- 
phase heat exchange on the speed of sound is smaller by approximately P o/P ~ times than the 
relaxation rate; therefore, in what follows we neglect the temperature relaxation. In this 
approximation the real part of the square of the speed of sound is written in the form 

p pc v To 1 + o~zT~ B~ (6 )  

In Fig. i we show by full lines the dimensionless form of the speed of sound in a mixture of 
air-corundum particles as a function of the dimensionless frequency mTf for various values 
of the voidage m according to Eq. (6). 

At low frequencies (mTf < i0) the speed of sound in the mixture is comparatively low 
(~i0 m/see), which is related to the high inertia of concentrated mixture particles with high 
density Px. With increasing frequency the particles do not succeed in following the gas os- 
cillations, and become less mobile during the passage of the wave front. In this case the 
sound wave spends on the average part of the time in the gas with the true velocity ao, and 
part of the time in the particle material (with significantly higher velocity). Therefore, 
at high frequencies the speed of sound in the mixture seems to be higher than the speed of 
sound in a pure gas. Figures 2 and 3 show the behavior of the speed of sound in a dispersed 
mixture as a function of particle diameter and density for given voidage and various frequen- 
cies. As is seen, the speed of sound in the mixture undergoes dispersion also with a change 
in particle size. The dispersion mechanism is such that for small particle sizes their iner- 
tial frequency is low, and with the passage of a wave front they move together with the gas 
particles, so that the sound wave propagates uniformly. For increasing particle size their 
inertia increases, which is equivalent to an increasing frequency. The higher the particle 
density, the smaller the size for which the speed of sound starts undergoing dispersion. 

To test the theory several materials were used in the so-called optimal regimes in VLs 
of slightly dispersed particles, widely discussed in the literature [8-10, 16-24, 26, 28]. 
The analysis implies the practically simultaneous extremal change of the various VL parame- 
ters: dynamic (maximum pulsations of gas pressure and simultaneous minimal pressures of lay- 
er particles on the enclosing surface [8, 9, 15, 24, 25]), kinematic (minimum angle of parti- 
cle separation from the bottom, maximum toss height and flight time of particles [8, 9, 24, 
25]), structural (maximum loosening and expansion of filling, smoothing of surface layer, ap- 
pearance of "suspended" or "spouting" regime), characteristics [8, 15, 16, 18, 20, 22-25], as 
well as transport coefficients (maximum heat-transfer coefficients, effective thermal con- 
ductivity, and mixing intensity [8, 16, 21, 24, 25]). 
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Analysis of the field of instantaneous gas pressure in the VL by the usual methods [8] 
has shown that a system of standing waves is generated in oscillatory fluidization in the op- 
timal regime. The pressure amplitude in them is a periodic function of coordinates and is 
independent of time. Alternate nodes (po-min) and antinodes (po-maxo) of gas pressure occur 
across the layer height. The lower boundary always obeys the antinode condition, and on the 
upper boundary po--- ~ 0. The distance between adjacent antinodes approximately coincides with 
the distance between nodes. Pressure oscillations between two adjacent nodes occur in a sin- 
gle phase. During the passage of an instantaneous line of pressure Po through the nodes the 
oscillatory phase changes by 180 ~ �9 The oscillation frequency of the gas pressure in all the 
layer cross sections usually coincides with the bottom oscillation frequency fB" Therefore, 
the relation between the oscillation frequency and the VL height in all these optimal regimes 
obeys the well-known dependence for linear resonance of a column of elastic gas with density 
p in a tube open from above of height H during vibration of the bottom with velocity A~e<<a: 

f~ = ( 2 m -  1)~4H. 

We h a n d l e d  by t h i s  e q u a t i o n  more t h a n  250 r eg imes  (o f  which  a round  ! 0 0  were  o b t a i n e d  by 
o t h e r  a u t h o r s ) ,  shown p a r t i a l l y  on F i g s .  1 -3 ,  and compar i son  w i t h  d i r e c t  measu remen t s  o f  v e -  
l o c i t i e s  o f  p r e s s u r e  waves i n  a i r ,  c a r r i e d  o u t  i n  the  n o n r e s o n a n c e  [27] and r e s o n a n c e  [28] 
r e g i m e s ,  shows c o n v i n c i n g l y  t h a t  Eq. (6) d e s c r i b e s  s a t i s f a c t o r i l y  t h e  w e l l - k n o w n  e x p e r i m e n t .  
This makes it possible to assume that the model used of elastic oscillation propagation in 
dispersed systems is fully adequate up to significant bulk concentrations of particles. 

NOTATION 

f and ~, frequency and angular frequency; g, free-fall acceleration; Ho and H, height 
of the bulk and vibrating beds; fB, TB, and A B, frequency, period, and amplitude of the 
forced oscillations; p, pressure; a, speed of sound; p, density; ~, dynamic viscosity; v, 
specific volume of the mixture; S, entropy; e, voidage; V, volume of the distinguished wave 
front; N, number of particles in the distinguished wave front; n, particle number density; 
v~, volume of an individual particle; k, index of the adiabat; c, heat capacity; T, tempera- 
ture; Tf and rq, respectively, times of velocity and temperature relaxation; D e d/dt, a dif- 
ferential operator; u, specific internal energy; w, velocity; d, particle diameter; %, ther- 
mal conductivity; i=Tr-~q--!; Bf and Bq, complexes defined in (6), m = I, 2 ..... Subscripts: 
0, pure gas, initial state; 1 partcle;, m is the dynamic value, and Bj =~0s/9; Bq==po~Cv~Pcv; 
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